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Abstract

The theory of parametric modulation resonance in hyperboloid mass spectrometers is presented. Modulation resonance
appears if parameters of the rf signal are periodically modulated. It is shown that modulation parametric resonances are excited
within the region of the stable solutions on the quasistability lines corresponding to the stability parameter of thenth order,
the absolute value of which is equal to 1. In the case where modulation resonance is excited within the stability zone near the
quasistability line, bands of unstable solutions (the instability bands) appear. The equations for the maximum value of the
instability parameter and for the width of the instability band are presented. The utilization of the modulation parametric
resonance for ion analysis is discussed. The relationship between the resolution and the required sorting time is given. The
harmonic and the pulse rf signals for the hyperboloid ion trap have been theoretically investigated. The resonance excitation
efficiency for parameters of rf signal modulated by a periodic signal of a complicated shape has been obtained. The application
of modulation parametric resonance for the hyperboloid mass spectrometers and its prospect for improvement of analytical
parameters, in particular, for increase of analysis speed are discussed. (Int J Mass Spectrom 184 (1999) 207–216) © 1999
Elsevier Science B.V.
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1. Introduction

In recent years, resonant excitation of ions has
been extensively exploited in hyperboloid† mass spec-
trometry as a powerful technique utilizing a supple-
mentary periodic field.

There are two ways of supplementary field cre-
ation: linear and nonlinear. In the first case the field
within an analyzer is close to the ideal field with a

quadratic distribution of the potential (the forces
acting upon a charged particle in each of three
perpendicular directions are in proportion to the
respective coordinates). Here, ion trajectories can be
described by a linear differential equation of the
second order (for example, by the Hill equation or by
its particular case—the Mathieu equation [1]). The
principle of independence of ion oscillations along the
coordinate axes can be implemented in such analyzers.

In the second case the field within an analyzer is
nonlinear. The force acting upon an ion has some
higher harmonics and ion oscillations along the coor-
dinate axes become coupled (which is very impor-
tant).

* Corresponding author.
† This term is used to define those mass spectrometers in which

the electrode shapes are combinations of one-sheet and/or two-
sheet hyperboloids.
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Linear excitation was used for the first time by
Paul and co-workers [2]. This mode was achieved by
superimposing an additional rf signal on the driving rf
signal. Most of the commercial instruments utilize the
nonlinear manner. For example, in three-dimensional
ion traps a supplementary rf potential difference is
usually applied across the endcap electrodes. This
dramatically improves parameters of mass spectrom-
eters [3–8]. Further developments of the idea of using
a supplementary rf field are in the works [9–12], in
which a filtered noise signal was used for excitation.

From our point of view, using the linear field is
more preferable because it does not change the
linearity of the differential equations, which describe
the ion motion. Practically, this manner can be imple-
mented by superimposing a signal of excitation on the
driving rf signal, or by modulation of parameters of
the rf signal (for instance, in the case of the sine-wave
signal, these parameters are: a frequency, an ampli-
tude, and a dc potential). In this article we shall
discuss the theory of modulation, which is very easy
to apply for the case of a pulsed rf signal.

2. Quasistability lines

When the basic rf signal without any modulation is
applied to electrodes of a hyperboloid mass spectrom-
eter then the projections of ion trajectories on the
coordinate axes can be defined by the Hill equations.
Generally speaking, parameters of these equations for
different axes are different, but they correspond to the
canonical form, which is given by

ÿ 1 yc~t! 5 0 (1)

wherec(t) is a periodic function of periodT0.
The parameter of stabilityn(1) depends onc(t),

and this dependence, in turn, defines the configuration
of the stability diagram. On the boundaries of the
stability diagram the value ofn(1) is equal tou1u.
Within the region of stable solutionsun(1)u , 1, and
within the unstable regionun(1)u . 1.

If we rewrite the general solution (1) as

y~t0, t! 5 y0c1~t0, t! 1 ẏ0c2~t0, t!

wherey0 and ẏ0 are, respectively, the initial coordi-
nate and velocity, andt0 is its start time, then forn(1)
we have [1]

2n~1! 5 c1~t0, t0 1 T0! 1 ċ2~t0, t0 1 T0! (2)

Index “1” in our definition of the stability param-
eter n(1) has the meaning that this parameter is
defined only on one periodT0 of the functionc(t).
But nT0 (wheren is an integer) also is a period of
c(t). Thus we can considern(n) as stability param-
eter of thenth order and express it as analogous to Eq.
(2):

2n~n! 5 c1~t0, t0 1 nT0! 1 ċ2~t0, t0 1 nT0! (3)

It can be shown that in the stability regionn(n) and
n(1) are related as follows:

n~n! 5 cosn arccosn~1! (4)

On the stability boundariesun(1)u 5 1, and there-
fore un(n)u 5 1. Although, within the stability region
un(1)u , 1, whereasun(n)u can be equal to 1.

Let us call the lines inside the stability zone, for
which un(n)u 5 1, quasistability lines (QSLs). We
can see that the functionn(n) 5 f(n(1)) hasextreme
points on the QSLs. This is the difference between
QSLs and stability boundaries, on which the deriva-
tive of n(n) with respect ton(1) is not zero. There are
n 2 1 lines of quasistability for eachn. The QSLs do
not usually affect ion motion if thec(t) signal is
undistorted. But even a small disturbance ofc(t) by
the periodic signal of periodnT0 exactly on the line of
quasistability with the respectiven can lead toun(n)u
. 1, which makes the motion of ions unstable (and a
band of instability appears near the QSL). The QSL
can be interpreted as the “rolled-up” zones of insta-
bility and “ready to expand” under the coincident
influence on thec(t) function. As was demonstrated
in [13–15] several improvements in parameters of
hyperboloid mass spectrometers (HMS) can be made
by changing thec(t) function shape, which changes
the shape of the general stability diagram. In this
article we shall try to discuss the prospects of conver-
sion of the stability zones by “excitation” of the
QSLs.
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3. The general equation

When the driven rf signal modulated by a supple-
mentary signal is applied to the electrodes of the HMS
(here, we consider amplitude modulation) then for a
low modulation level the Hill equation can be ex-
pressed in the following form:

ÿ 1 yc~t!@1 1 e0w~t!# 5 0 (5)

wherec(t) has period ofT0, andw(t) has period of
nT0, e0 ,, 1 and amplitude ofw(t) is close to 1 (this
limitation is not strict). The general solution of Eq. (5)
can be expressed in the form of series expansion

y~t! 5 y0~t! 1 e0y01~t! 1 e0
2y02~t! 1 · · ·

Substituting this (sequence) expansion into Eq. (5)
and assigning zero to coefficients neare0

n we obtain
the following system of equations (the Poisson meth-
od):

ÿ0~t! 1 c~t! y0~t! 5 0

ÿ01 1 c~t! y01~t! 5 2c~t!w~t! y0~t!,
(6)

· · ·

ÿ0i~t! 1 c~t! y0i~t! 5 2c~t! y0i21
~t!

This system is solved in succession [1]:

y0i~t! 5 Aiy1~t! 1 Biy2~t!

2
1

g 3y1~t! E y2~t! y0i21
~t!c~t!w~t! dt

2 y2~t! E y1~t! y0i21
~t!c~t!w~t! dt4

Here y1(t) and y2(t) are two independent partial
solutions of original equation (5) defined withe 5 0;
g is the Wronskian determinant of the same equation.

For i . 0, we can findAi and Bi from the
following conditions: whent 5 t0, y0i(t 5 t0) 5 0
and ẏ01(t 5 t0) 5 0. For i 5 0, we can findAi and
Bi from the following conditions: whent 5 t0,
y0(t 5 t0) 5 y0 and ẏ0(t 5 t0) 5 ẏ0. Thus, for
n(n) we obtain

2n~n! 5 k0 1 e0k1 1 · · ·1 e0
i ki 1 · · · (7)

where

ki 5 @ y0i~1,0!
~t0 1 nT0! 1 ẏ0i~0,1!

~t0 1 nT0!#

y0i (1,0)
(t) is defined fory0 5 1 andẏ0 5 0;

ẏ0i (0,1)
(t) is defined fory0 5 0 andẏ0 5 1.

For the first three coefficientski we obtain the
general expressions

k0 5 a1~n! 1 b2~n!

k1 5
1

g E
t01nT0

t0

z H @a1~n! 2 b2~n!# y1~t! y2~t!

1 a2~n! y2
2~t! 2 b1~n! y1

2~t!Jc~t!w~ y! dt

k2 5
1

g0
2 E

t01nT0

t0

z 5f1,2~t!H @a1~n! 1 b2~n!# y1~t! y2~t!

2 a2~n! y2
2~t! 2 b1~n! y1

2~t!
J

1 f2,2~t!@a2~n! y1~t! y2~t! 2 b2~n! y1
2~t!#

1 f1,1~t!@b1~n! y1~t! y2~t! 2 a1~n! y2
2~t!#

6
c~t!w~t! dt (8)

f1,2~t! 5 E
t

t0

y1~t! y2~t!c~t!w~t! dt

f1,1~t! 5 E
t

t0

y1
2~t!c~t!w~t! dt

f2,2~t! 5 E
t

t0

y2
2~t!c~t!w~t! dt

where a1(n), a2(n), b1(n), and b2(n) are coeffi-
cients defined from

y1~t 1 nT0! 5 a1~n! y1~t! 1 a2~n! y2~t!

y2~t 1 nT0! 5 b1~n! y1~t! 1 b2~n! y2~t!

Eqs. (7) and (8) are the solutions of the problem in the
general form: we have found the stability parameter
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for modulation of thec(t) function with the w(t)
signal.

4. Harmonic signal

Now consider the solution of the problem for the
Mathieu equation (harmonic signal). In this case [1]

y1~t! 5 O
2`

1`

C2r cos~2r 1 b!t

y2~t! 5 O
2`

1`

C2r sin ~2r 1 b!t

a1~n! 5 cosbnp

a2~n! 5 2sin bnp

b1~n! 5 sin bnp

b2~n! 5 cosbnp

T0 5 p

For ki we have

k0 5 2 cosbnp

k1 5 2
1

g
sin bnp E

t01np

t0

@ y1
2~t! 1 y2

2~t!#c~t!w~t! dt

k2 5
1

g2 cosbnpE
t01np

t0

z F2f1,2~t! y1~t! y2~t!

2 f2,2~t! y1
2~t! 2 f1,1~t! y2

2~t!G
z c~t!w~t! dt 1

1

g2 sin bnp

z E
t01np

t0 Ff1,2~y2
2~t!2y1

2~t!!

1~f1,1~t!2f2,2~t!!y1~t!y2~t!
G

z c~t!w~t! dt (9)

and for n(n) confined to the first three terms of the
expansion we obtain

n~n! 5 F1 1
e0

2

2g0
2 C0Gcosbnp 1

e0

2g0
D0 sin bnp

(10)

whereC0 and D0 are the respective integrals in Eq.
(9).

From this general expression we can draw several
important conclusions: (1) whenC0 . 0 on a line of
quasistability then a givenw(t) signal excites this line,
near which a band of instability appears; (2) a width
of the instability band can be approximately estimated
as

Dbn > 2
e0

g0np
d0

1/2

d0 5 C0 1 SD0

2 D2

whereDbn is a width of the instability band defined as
the difference between the values ofb on its bound-
aries. The value ofDbn can be interpreted as a value
inversely proportional to the resolution across the
stability zone, because the value ofb varies up to 1
within this zone. In this case the resolution within
instability band can be estimated as

r 5 rz

1

Dbn

whererz is the resolution for the zone surrounding the
working point, and can be defined as the value inverse
to the relative width of this zone. Thus, in the case of
the ion trap, in the mode wherea 5 0, rz ' 0.5;
near the apex of the first stability zone the resolution
is increased up to 2 to 3. (1) WhenD0 Þ 0 the
extreme point ofn(n) within the instability band is
not located in its center. IfD0 5 0 it can be taken that
the extreme point ofn(n) lies on the line of quasist-
ability. (2) The maximum value ofn(n) within the
instability band can be expressed as

n~n!max> F1 1
e0

2

g0
2 d0G1/2

If m is a parameter of instability [1] then we obtain

m2 >
e0

2d0

g0
2~np!2

and the relation betweenDbn andm:
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Dbn 5 2m

(3) Using equations forDbn and m obtained previ-
ously and evaluatingNsort from

mNsortp 5 ln ~1/D!

we can find

Nsort5
2 ln ~1/D!

prz
r

If we acceptD0 5 0.1 andrz 5 0.5 (a 5 0) we
obtain

Nsort5 2.93r

and if we want to increase the resolution in the
mass-selective instability mode (a 5 0) by using a
band of instability, we need almost 300 periods of rf
field in order to reachr 5 100 andD0 5 0.1. At the
same time, it follows from the formula of Paul and
co-workers [2]

Nsort< 3.5r1/2

that the same resolution can be obtained about 10
times faster. The sorting time can be decreased by 4 to
6 times if the ion trap operates within the instability
band near the apex of the first common stability zone.
But this time is still greater then the sorting time in the
apex of this zone (in this case the time defined in [16]
givesNsort 5 25). The resolutionrz is increased up to
25 to 30 and the sorting time within the instability
band is decreased to several periods if the ion trap
operates in the upper stability zones. It should be
noted that the estimation we carried out implies the
continuous exposure of the excitement field. The
influence of this field can be increased if it is turned
on not immediately after the forming of ions in the
trap.

Let us consider the modulation signal in the fol-
lowing form:

w~t! 5 cos 2Vt

whereV 5 p/n; p is a nonzero integer.
Then we have

D0 5 0

C0 5
~np!2

32
O
2`

1`
2C2rC22~r1h!@22~r 1 h! 1 b#2

(11)

whereh 5 b 6 V.
In the case of the sine-wave signal for the coeffi-

cientC0 we obtain the same expression. Sinceh may
have only two values (0 and 1), coefficientC0 also has
two values. It means that one harmonic signal simul-
taneously excites two lines of quasistability, which
correspond tob 5 1 2 V and b 5 V, respectively.
The signal of frequencyV 5 0.5 excites only one line
of quasistability withb 5 0.5. As follows from Eq.
(11), the efficiency of the QSL excitement is different
for different lines and the same lines can be excited by
different signals with the different efficiency (we
mean that the values ofC0 are different).

For example, we have found the values ofC0 for
the working point, which lies on the working line with
a 5 0 (frequently used in the mass-selective mode).
In this caseq 5 0.4511 andb 5 1/3. This line of
quasistability can be excited by the harmonic signal
with V1 5 1/3 andV2 5 2/3. The sum of series in
Eq. (11) is equal to 0.25 in the case ofV1 and equal
to 0.48 in the case ofV2. Since the sum in Eq. (11) is
squared, the line of quasistability corresponding to
b 5 1/3 (n 5 3) is excited by the signal of fre-
quencyV2 5 2/3 more effectively than by the signal
of frequencyV1 5 1/3. For the Mathieu equation, as
we have shown [Eq. (5)], the modulation mode
implies the modulation of a dc potential and a rf
potential by one signal simultaneously. In practice,
however, the modulation of one parameter can be
obtained.

When only a dc potential is modulated by the
signal cos 2Vt we obtain the following expression for
C0:

C0 5
~np!2

32
a2 O

1`

2`
2C2rC22~r1h! (12)

When only a rf amplitude is modulated:
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C0 5
~np!2

32
q2 O

1`

2`
2C2r@C22~r111h! 1 C22~r211h!#

(13)

When only a phase is modulated:

C0 5
~np!2

32
q2 O

1`

2`
2C2r@C22~r111h! 2 C22~r211h!#

(14)

When the whole signal is modulated by a compli-
cated function, for instance, by

w~t! 5 O
i50

i0

bi cos 2V it

then for evaluation ofC0 one obtains the following
expression:

C0 5
~np!2

32

z H O
i50

i0

bi O
2`

1`

C2rC22~r1h!@22~r 1 h! 1 b#2J2

(15)

HereV i limits i0:

Vi0 # 1.

As follows from the numerical calculation using
the equations obtained that the modulation efficien-
cies of different parameters significantly differ (the
value of the stability parameter is defined byC0). The
modulation of an amplitude corresponding tob 5

1/3, a 5 0, and q 5 0.4511 by asignal of fre-
quencyV 5 2/3 yields the value ofC0 three and a
half times greater then for modulation by a signal with
V 5 1/3. The modulation of a phase obtained with
V 5 2/3 yields the value ofC0 about 40 times greater
than in the case ofV 5 1/3. Whenb 5 2/3, a 5 0,
and q 5 0.7847 themodulation parametric reso-
nance can be excited either byV 5 1/3 or V 5 2/3.
Here the values ofC0 are almost the same.

The modulation by a signal that is described by an
odd function does not change Eq. (15).

If we assume for the ion trap the working time of
one cycle is of;102 periods then the equations
obtained give us the value ofe0 such that the ampli-
tude of motion of ions, whose working point lies
within a band of instability, will increase by a factor
of 2. As it turned out,e0 , 1% is sufficient for such
considerable increasing of the ion amplitude. Thus,
even a small excitation signal can effectively excite
the lines of quasistability, which dramatically in-
creases the amplitude of the ions and ejects them from
the ion trap. This decreases the sensitivity of the
analyzer and causes the mass peak shape to deterio-
rate.

5. Pulse signal

Using a pulse signal can also excite the modulation
parametric resonance in HMS. In this case, the mod-
ulation function should also be pulsed. If we apply the
conventional bipolar signal, which consists of two
signals of different polarity, for different duration and
amplitude, we can modulate (simultaneously or sep-
arately) the pulse amplitude, the period of pulse
function, or the relative pulse duration (the pulse
width high to pulse width low ratio).

A period of the modulation function can be taken
as equal ton periods of the working pulse signal. We
can also assume that one of the signal parameters has
a fixed value forn1 periods, and forn2 periods it has
another value (n1 1 n2 5 n). We note, however,
that it is not quite correct to speak here about “the
pulse modulation function.” For example, when we
modulate the relative pulse duration, it is more perti-
nent to speak about timing features of this modula-
tion.

In the theory of the pulse signal for the HMS it is
more comfortable to use the pulse parameters [13]:

ai
2 5

2DUiT0
2e

mx jd
2 ,

wheree/m is the charge-to-mass ratio;T0 is a period
of the pulse function;xj is the geometrical parameter
of the electrode system;d is the characteristic dimen-
sion of the electrode system;DUi is the potential
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difference between electrodes corresponding to a
given pulse signal; and 2d is the closest distance
between the two endcap electrodes along they axis.

For the elliptic electrode system [17]:

xx 5 1 1 n0 1 p0

xy 5
1 1 n0 1 p0

p0

xz 5 2
1 1 n0 1 p0

1 1 p0

For the axisymmetric ion trap:

xr 5 2 1 n0 xz 5 2
2 1 n0

2

For the electrode system of the quadrupole mass
filter: d 5 r0 is a radius of the field;xx 5 2; xy 5
22.

The coordinate of an ion is usually normalized to
the characteristic geometrical dimension, and the
velocity is normalized to a periodT0. In this case the
dimensionless velocity and coordinate of an ion be-
fore the pulse field exposure and after are related to each
other with elements of the transformation matrix [13]:

ẏ~t0 1 T0! 5 c1~t0! y0 1 c2~t0! ẏ0

y~t0 1 T0! 5 c3~t0! y0 1 c4~t0! ẏ0

where t0 is the phase where the initial parametersy
and ẏ are being set up. Keeping in mind that the
elements of the transformation matrix depend ont0,
we can omitt0 henceforth.

We have obtained the following expression:

2n~n! 5 2 cosv# n1 cosvn2

1 Fc1c# 4 1 c4c# 1 1 c2c# 2

1 c3c# 3 2 2n~1!n# ~1!
G sin v# n1 sin vn2

sin v# sin v
(16)

where cosv 5 n(1), and an overbar means that the
value of this parameter is changed by modulation.

Let us simplify the problem: we putn1 5 1, and
thereforen2 5 n 2 1. So long asci, n(1), andv are
the multivariable functions, the values ofc# i, n# (1),
and v# can be obtained by using the Taylor approxi-

mation for a multivariable function. When the level of
modulation is low enough forn(n), and two param-
eters are modulated simultaneously, then we obtain

n~n! 5 @1 1 w~i , j !# cosvn 1 c~i , j ! sin vn

(17)

where

w~i , j !

5
1

2 5
~Di !2F­c1

­i

­c4

­i
2

­c2

­i

­c3

­i G
1 ~Di !~Dj !F­c1

­j

­c4

­i
1

­c1

­i

­c4

­j Y
2

­c3

­i

­c2

­j
2

­c3

­j

­c2

­i

1 ~Dj !2F­c1

­j

­c4

­j
2

­c2

­j

­c3

­j G
6

c~i , j ! 5 2F­v

­i
~Di ! 1

­v

­j
~Dj !G

For the extreme value ofn(n)m within the instability
band:

n2~n!m 5 1 1 ~Di!2F­c1

­i

­c4

­i
2

­c2

­i

­c3

­i
1 S­v

­i D
2G

1 ~Di !~Dj !F­c1

­j

­c4

­i
1

­c1

­i

­c4

­j Y
2

­c3

­i

­c2

­j
2

­c3

­j

­c2

­i
1 2

­v

­i

­v

­j

1 ~Dj !2F­c1

­j

­c4

­j
2

­c2

­j

­c3

­j
1 S­v

­j D
2G
(18)

It can be seen from Eq. (17) that the point on the
stability diagram that corresponds to the extreme
value of n(n)m for c(i , j ) Þ 0 is shifted from the
respective line of quasistability. This is the distinctive
feature of the instability band structure for the HMS
utilizing the rf pulse signal.

The elements of the transformation matrix are
given by
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c1 5 aishaid ichajd j 1 ajshajdjchaidi

c2 5 chaid ichajdj 1
aj

ai
shaid ishajd j

(19)

c3 5 chaid ichajdj 1
ai

aj
shaid ishajd j

c4 5
1

ai
shaidichajd j 1

1

aj
shajd jchaid i

For some modulations of the working signals Eq.
(18) can be simplified. For example, if only one
parameter is modulated, Eq. (18) includes the first two
terms only. There is a possibility to modulate the
relative pulse duration by increasing the duration of
one pulse and decreasing the other in the same value
during one period (the common period is a constant).
Then Eq. (18) can be transformed into the following
form:

n2~n!m 5 1 1
1

4
~Dd!2~ai

2 2 aj
2!2 c4

2

1 2 n2~1!
(20)

A width of the instability band in the case of the
pulse signal is given by

Dvinst >
2

n
@c2~ j , i ! 1 2w~ j , i !#1/2 (21)

and when the relative pulse duration is modulated [see
Eq. (20)]:

Dn~1! inst 5 UDd~ai
2 2 aj

2!c4

n
U (22)

It is interesting to note, that a width of the
instability band does not depend onn(1). The depen-
dence of the sorting time on the resolution is similar
to that we have obtained for the harmonic signal:

Nsort5 ln~1/D!@1 2 n2~1!#1/2r/rz (23)

whereNsort is the number of sorting periods. It should
be noted that Eq. (23) includes

@1 2 n2~1!#1/2.

This means that for the instability bands located close
to a boundary of the common stability zone, the

required sorting time is reduced and the respective
ions leave the electrode system faster.

6. Stability diagram modification

Modulation parametric resonance, with its instabil-
ity bands appearing in the stability zones, has attrac-
tive prospects for the mass-selective ejection of ions
from the ion trap. The basic theoretical principles of
such selective separation have been shown. But, the
instability bands are broadened with an increase of
modulation level, and as follows from the equations
obtained, the stability zones are transformed into the
narrow stability zones and the common stability zone
turns into several small zones separated by instability
zones. Under the circumstances we have the opportu-
nity to use these narrow stability zones for the
one-dimensional sorting of the charged particles, ad-
vantages which we have previously reported. In this
case the sorting process can be carried out “along the
boundary” of the instability band. This mode of
operation is traditionally used in hyperboloid mass
spectrometry. The sorting efficiency of the charged
particles depends on the structure of the instability
region directly adjacent to the boundary of the stabil-
ity zone. In particular, the changing of the “sorting”
parameterm [1] within this boundary region is very
important. For practical mass spectrometry the rela-
tionship between the desired sorting time and the
resolution level [see, for instance, Eq. (23)] is very
important. The above theory yields the equation
describing the boundaries of the instability band
caused by the modulation parametric resonance.

The dependence ofr on Nsort can be expressed as

r 5 rz

c00 1 ~c00
2 1 ln2~1/D!/Nsort

2 #1/2

@1 2 n2~1!#1/2 ln2~1/D!
Nsort

2 (24)

where

c00 5
1

n
$c2~i , j ! 1 @1 1 w~i , j !#2%1/2

From this equation two important conclusions
follow. When the modulation is not significant then

@c~i , j !2 1 @1 1 w~i , j !#2 2 1#3 0,
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and Eq. (24) can be changed to Eq. (23).
When the modulation is significant, and the insta-

bility bands are transformed into the broad zones of
unstable solutions and Eq. (24) becomes

Nsort> F ln2~1/D!@1 2 n2~1!#1/ 2n

2rz$c
2~i, j! 1 @1 1 w~i, j!#2 2 1%1/ 2G1/ 2

r1/ 2

(25)

We can see that the required sorting time in Eq.
(23) is increased proportionally to the resolution; in
Eq. (25) this dependence has been changed. Here the
sorting time is increased in proportion tor1/2, which is
typical for HMS operating near the stability diagram
boundaries. This remarkable property decelerates the
increasingNsort whenr is significant and allows one
to develop the high-speed hyperboloid mass spectrome-
ters with high resolution. Although, as we can see from
Eq. (25), an increase ofn also increasesn(1), which is
not rational. A more attractive option is to change the
width of the instability band, and respectively, the width
of the working stability band by variation of the modu-
lation level of the respective parameter.

It can be demonstrated that forDd ; 15% the
value of the coefficient beforer1/2 is 3 times less than
the value calculated from the Paul et al. formula for
the quadrupole mass filter. This is a substantial
argument in favor of one-dimensional sorting in the
first zone of the stability diagram.

The common stability diagram modified by insta-
bility bands is shown in Fig. 1 for the axially
symmetric ion trap as an example of modulation
parametric resonance whenn 5 3. The parameters
a1 anda2 were modulated. The modulation level was
2% for both parameters. As a result of the modulation
the first common stability zone is divided into the six
smaller zones: two zones per each coordinate. The
configuration of the smaller zone (labeled “O” in Fig.
1) for the modulation level of 20% for the same
parametersa1 anda2 is demonstrated in Fig. 2. The
working lines and the respective resolutions are
shown. For this zone the values of parametersa1 and
a2 are presented in Table 1.

We have found that the value ofvr1/2 is a constant
along the working line for different resolutions (from
10 to 15 up to several thousands) for zone showed in
Fig. 2. We calculated the slope angle of the working
line for the point lying deep inside this zone (l 5
0.639 541 09). We obtained the different values of
vr1/2 for two boundaries of the stability zone. For the

Fig. 1. The common stability diagram of axially symmetric ion trap
for parametersa1 anda2 modulated by 2%. 12 nz(1) 5 1; 2 2
nz(1) 5 21; 3 2 nr(1) 5 1; 4 2 nr(1) 5 21.

Fig. 2. The small stability zone (labeled “O” in Fig. 1) for
parametersa1 anda2 modulated by 20%.

Table 1
The values of parametersa1 anda2 corresponding to apexes of
the small zone

Number
of apex 1 2 3 4

a1 3,9636 3,9658 4,2488 4,2482
a2 2,6019 2,6096 2,6775 2,6733
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side lying close to the origin of coordinatesvr1/2 5
8, and for the opposite sidevr1/2 5 8.6. The value of
vr1/2 for the z boundary near the upper apex of
common stability zone for three-dimensional axially
symmetric ion trap is less than or equal to 3. Thus, it
decreases the number of sorting periods almost 2.5
times for a constant resolution near the instability
band. This is particularly important for the develop-
ment of new instruments with high analysis speed.

7. Conclusions

In this article (1) we have developed the theoretical
principles of parametric modulation resonance in the
hyperboloid mass spectrometer; some special features
of modulation by continuous and discrete signals
(harmonic and pulse signals for HMS) have been
investigated; the equations for the width of instability
bands and for the extreme value of the instability
parameter within the bands have been obtained; the
relationship between the resolution and the required
sorting time have been found for the HMS utilizing
modulation resonances; (2) we have shown that the
modulation of the rf signal parameters by a complex
signal causes the interference of influence of their
harmonics; it has been demonstrated that such inter-
ference may appear by simultaneous modulation of
two different parameters of the rf signal; (3) it has
been shown that the modulation parametric resonance
using a harmonic signal excites two quasistability
lines, near which instability bands appear; (4) the
common stability diagram is extremely sensitive to
the modulation parametric resonance; for doubling of
oscillation amplitude for ions, which working points
lie within the instability band, during the sorting time,
the modulation of 1% for a parameter of rf signal is
sufficient; (5) it has been demonstrated that modula-
tion parametric resonance can be successfully used for
the intentional modification of the common stability
zones: the modulation of 20% for the pulse signal
transforms the first stability zone into the set of
narrow instability bands and provides effective one-
dimensional sorting.
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